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Quantum and classical mechanics of q-deformed systems 

Sergey V Shabanovt 
Institute for Theoretical Physics. University of Bem, Sidlerstrasse 5,  Bem, CH 3012, 
Switzerland 

Received 7 September 1992 

Abstract Quantum and classical mechanics of a system of q-deformed bosonic oscillators are 
considered. The q-deformed Heisenherg-Weyl algebra of creation and destruction operators 
is realized by differential operators in a space of functions of real commutative variables. The, 
corresponding Hilbert space is constructed. In this approach the deformation parametertums out 
to be a function of the Planck constant, an oscillator frequency and a parameter with dimension 
of length The Hamiltonian path integral is derived and its semiclassical appmximation is 
investigated to obtain the corresponding q-deformed classical theory. The phase space spanned 
by the usual commutative coordinates is shown to be a cylinder in classical theory. The 
dimensional parameter introduced determines its radius. It is argued that the qdeformation 
on be associated with a special non-canonid transformation. The principle of least action 
for the classical qdeformed system is formulated. A representation of Uq(m) in a space of 
functions on n phase space spanned by commutative coordinates is conshucted. 

1. Introduction 

The present paper is devoted to quantum and classical mechanics of a system of q-deformed 
bosonic oscillators. The quantum q-deformed harmonic oscillator is described by creation 
and destruction operators obeying the non-standard commutation relations [1-3] that depend 
on the deformation parameter q .  When q tends to 1, the commutation relations convert into 
the standard ones, i.e. they form the Heisenberg-Weyl algebra. The q-deformed oscillators 
are used  to construct representations of quantum groups [4]. However, this dynamical 
system is interesting by itself and attracts much attention from physicists. 

In fact, looking at $e history of physics, one can see that physicists have ‘deformed‘ 
fundamental physical laws several times. A new (‘deformed‘) theory always appears 
to be more general and contains an initial (‘classical’) theory as a limit case when the 
‘deformation’ parameter tends .to a particular value. For instance, relativistic mechanics 
becomes Newtonian when the deformation parameter fl  = v /c  goes to zero, or quantum 
mechanics turns into a classical theory in the limit Sjfr + 00 (S is an action). Although 
the deformation parameters v/c and S f h  are dimensionless, the physical meaning of the 
deformations is related to the fundamental dimensional constants c and h. These constants 
determine physical conditions under which the ‘deformed‘ theory becomes the ‘classical‘ 
one. In other words, the limits v/c + 0 and S/h -+ 00 mean that velocities in a system 
are much less than the light velocity, v << c, and the action of a system is much greater 
than the Planck constant, S >> h,  respectively. 
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It is believed that the so called q-deformation should also be associated with 
a fundamental dimensional constant, while the deformation parameter q must be a 
dimensionless function of it and some quantities characterizing a system. In the present 
work, we realize this programme for an arbitrary system of bosonic q-oscillators. 

In section 2, we introduce the basic notation adopted for describing the q-deformed 
harmonic oscillator and discuss a connection between the ordinary and q-deformed 
oscillators. We realize the q-deformed Heisenberg-Weyl algebra by differential operators 
in a space of functions of one real variable. In this approach, the deformation parameter 
turns out to be a function of the Planck constant, an oscillator frequency and a dimensional 
parameter 1, (a fundamental length). Then we consider the evolution problem and find a 
transition amplitude for the qdeformed oscillator. In section 3, we generalize our approach 
to a system of q-deformed oscillators. 

We obtain the path integral 
representation of the transition amplitude for an arbitrary system of q-oscillators. Then we 
investigate the semiclassical limit of the path integral derived and obtain the corresponding 
classical theory with ordinary commutative canonical variables. We discover that the 
phase space of the classical theory is a set of cylinders whose radii are determined by the 
fundamental length 1,. When 1, tends to infinity, the theory tums into a classical mechanics 
of usual harmonic oscillators. From the physical point of view, the limit Lq + CO means 
that the energy of each q-deformed oscillator with a frequency UJ becomes much lower than 
the characteristic energy 021,2/2 (see section 5.1). 

In section 5 ,  classical Hamiltonian dynamics of q-oscillators is studied. We derive 
Hamiltonian equations of motion and solve them for some particular Hamiltonians. We 
analyse the symplectic structure of the theory and show that the q-deformation of classical 
systems can be associated with a special non-canonical transformation or with a special 
modification of the standard symplectic structure. 

This 'deformed' symplectic structure can be postulated at the very beginning. The 
canonical quantization of a system of that type leads to the q-deformed quantum mechanics. 
In this approach, the phase-space variables entering into the effective action in the path 
integral play the role of the Darboux coordinates for the symplectic structure. 

We also formulate the principle of least action for the theory with the 'deformed' 
symplectic structure. We finish section 5 by constructing a representation of the q-deformed 
universal enveloping algebra U,(m) in a space of functions on a phase space spanned by 
commutative coordinates. 

Appendix A contains a brief review of the path integral method for systems with a non- 
trivial configuration space (boundary conditions). We use results presented in it to elucidate 
the phase-space structure in a system of q-oscillators. 

Section 4 is devoted to the path integral approach. 

2. Quantum dynamics of the q-deformed oscillator 

The q-deformed oscillator [l-31 is the simplest system in which the creation and destruction 
operators obey a non-standard algebra depending on a parameter q (the deformation 
parameter). The limit q + 1 corresponds to the ordinary Heisenberg-Weyl algebra. We 
consider this system to explain the main points of our approach to the description of q- 
deformed systems. 

2.1. Standard notation 

The q-deformed harmonic oscillator is defined by the q-deformed Heisenberg-Weyl 
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algebra [l-31 

~~ 

;;+ - qi+i = q-R (2.1) 

where an operator 2 and its adjoint 2" act in an abstract Hilbert space with basis 
In), n = 1,2,. . ., such that 

2 In) = [n]il'~n - 1) ;+In) =,[i + l]~lZln + I) i lo) = o (2.2) 

here [XI, = (qx - q-x)/(q - q-') and q is assumed to be real. The operator fi plays the 
role of the number operator 

- 
N In) =n[n) .  . .  (2.3) 

Equality (2.3) comes out from the definitions (2.1) and (2.2). Indeed, one can be convinced 
that 

[i+, fi] = -i+ [i, 61 = i (2.4) 

which provides the justification of (2.3). 

we carry out the following transformation [3] 
To remove the dependence of the commutation relation (2.1) on the number operator, 

The operators (2.5) satisfy the commutation relation 

It follows from (2.2). (2:3) and the definition (2.5) that 

6+5 = (1 -q2"/(1 - q 2 ) .  (2.7) 

There is a coordinate realization of the q-deformed harmonic oscillator proposed by 
Macfarlane [3] 

(2.8) 

where a = a/ax. The commutation relation (2.6) is satisfied if q = exp(-s*) and 
act.* = (1 - q2)-'. We choose q to be positive. The case of negative q corresponds 
to the choice q = - exp(-s'). It changes nothing in what follows. When s runs over the 
real axis, q varies inside the interval [O, I]. To derive the theory with q z 1, one should 
replace ( x ,  a) by (-x, a) in (2.8). Then q = exps'. The operator $+ is the adjoint of 6 in 
a Hilbert space of functions of one real variable x [3] (see also section 2.3). 

5 =a! - e-is.reis3) ;+ = (e2isx - eisaeisx) 
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2.2. The rehtion between q-deformed and usual theories 

In the l i t  q + 1(s + 0), the operators (2.8) turn into the destruction and creation 
operators, respectively, of a usual harmonic oscillator 

1 1 i = -- ( X  + a) +ow i+ = 3 (x  - a) +O(s). Jz 
The real variable x in (2.9) is a coordinate of the configuration space (oscillator amplitude). 
Comparing (2.9) and (2.8) we conclude that the q-deformation can be associated with a 
modification of the destruction and creation operators such that x remains as a coordinate 
spanning the configuration space of the q-deformed system. Therefore, if we believe that 
qdefomed theories are more general and have to contain the usual ones as limit cases, just 
as quantum mechanics contains the classical one, then the variable x must be assumed to 
be a dimensional quantity. This assumption immediately leads to a contradiction. Indeed, 
the parameters must also be dimensional, which is impossible because q = exp(-s2) is a 
dimensionless number as follows from (2.6). 

Fortunately, (2.8) is not the most general realization. One can change exp(is3) + 
,9 exp(i'a), where ,9 and s' are real, in (2.8), while the commutation relation (2.6) remains 
untouched if 

q2 = exp(-as') m* = (1 - q'1-l. (2.10) 

The coefficient ,8 can be eliminated by re-ordering the operators exp(isx) and exp(id3) in 
(2.8); therefore, we will assume it to be one. If the dimensions of s and s' are opposite, 
then q is dimensionless. 

To specify the constants s and s', we require that the operators 6 and 6+ have the 
following behaviour in the l i t  q + 1 

(2.11) 

where j3 = -%a and 2 = x (we use the coordinate representation), i.e. 

16, 6+1 = R + O(q -~ 1) (2.12) 

and o is an oscillator frequency. We also restore the Planck constant. This implies that we 
put R instead of 1 in the right-hand side of equation (2.6) and, hence, cia* = h(1 - q2)-' 
in (2.8). Our requirement yields the following relations s' = ys + O(s2), as s + 0, and 
y = A / w .  

Introducing a 'fundamental' length lq = l/s we obtain the q-deformed quantum theory 
where the destruction and creation operators [5] 

6 = ff(e-2if/lp - e-i"/lqe-#l(mlq)) (2.13) 

are functions of the standard canonical variables obeying the Heisenberg commutation 
relation 

6+ = ff*(e2ii/lg - e-F/(mfq)eiVl q )  

[i, j31 = 2. (2.14) 
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The parameter of the q-deformation depends on the Planck constant, an oscillator frequency 
and the fundamental length 1,, 

q = exp ( - i i /w!i)  (2.15) 

so that q --f 1 as 1, + 00. The physical meaning of the dimensional parameter 1, is 
discussed in sections 2.3 and 4.4. 

The dependence of the deformation parameter on the Planck constant is an interesting 
feature of the approach considered and leads to some consequences. In accordance with the 
rule of canonical quantization, [.] = iR[, ), where [, ] is the Poisson bracket, we can take 
the formal classical limit, 2 ,  j + x ,  p and -%-I[, ] + [, ) as R + 0. The commutative 
variables x, p play the role of canonically conjugated variables in the classical theory, As 
aa* = 01,2/2 + O(R), we observe~that in the formal classical limit the operators (2.13) 
become commutative functions of the canonical variables x and p [5,6] 

This property allows us to construct a 'q-deformed' classical theory of a harmonic oscillator 
on the ordinary commutative phase space [6] (see section 5). The same result follows from 
the semiclassical approximation of the path integral for the transition amplitude [5], which 
is discussed in section 4. 

2.3. The Hilbert space 

In the coordinate representation of (2.13), 6 = -%a. the ground state (P&) = (xl0) 
satisfying the equation ~ Q o  = 0 reads [3,51 

(2.17) 

The excited states Qn(x)  = (xln)  are determines by applying the operators 6+" to the 
ground state (2.17) and have the form 

~ , ( x )  = ( ~ ~ * ) - " ( [ n ) ! ) - ' / * b + ~ ~ o ( x )  = H!(exp(Zi/l,))@o(x) (2.18) 

(2.20) 

are the Gaussian polynomials [7]. Using the relation 171 [n+l, kI4 = In, k-ll,+q"[n, k], 
we obtain 

6 + Q " ( X )  = a*(n + l)-'/*Qo+l(x) bQ,(x) = a{nl-'/%n-*(x) (2.21) 

therefore, 

b+bQ,(x) = aa*[n]Q"(x) (2.22) 
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and 

f i @ " ( x )  = n @ ( x ) .  (2.23) 

The latter follows from (2.22) and (2.7) (after restoring the Planck constant, the right-hand 
side of equation (2.7) acquires the factor h). 

The states (2.18) form an orthogonal basis with respect to the scalar product 

(2.25) 

The formula (2.24) comes from the normalization relation of the RogersSzegoe polynomials 
?,(e) = ((n')!)'/2(-q)-"H~(-qexpiB) on the unit circle 0 E [0, 2n) [3,7]. The operator 
b' is the adjoint of 6 in the Hilbert space 'H9 of vectors 

m 
C W )  = = c*n@n(x) (2.26) 

"=O 

with the scalar product (2.24). 
The parameter l9 determines the volume of the physical configuration space, i.e. in 

this approach, the q-deformation also leads to compactification of the configuration space. 
In section 4, we prove that the physical configuration space of the qdeformed oscillator 
is topologically equivalent to a circle S'. Moreover, the topological structure of the 
configuration space is presenred in the classical limit, while the corresponding phase space 
turns out to be a cylinder. 

When lq tends to infinity, the Hilbert space turns into the Hilbert space of an ordinary 
harmonic oscillator. Indeed, the measure (2.25) can be approximated by the Gaussian 
integral, 1/1, + J-2 dz, z = n/19, as lq + CO, which is equal to 1, i.e. ul + 1. 
Due to equations (2.24) and (2.11), the functions @.(x) are converted into the ortho- 
normalized oscillator wavefunctions. 

2.4. A transition amplitude 

Dynamics of a quantum system is determined by theevolution operator fir = exp(-itfi/h) 
where fi is a Hamiltonian. The matrix element (xIUtIx') = U&. x'), where x and x' are 
points of a configuration space, defines the transition amplitude of a system from an initial 
point x' to the final one x during a time t .  The amplitude satisfies the Schrodinger equation 

iha,ur(x,x') = fi(x)u,(x,x') (2.27) 

with the initial condition 

Ut=o(x,x') = (xlx') (2.28) 

where (xlx') is the unit operator kernel, 
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The evolution problem for q-deformed systems has also been formulated in 18-lo]. 
However, we encounter some uncertainties when applying (2.27) to q-deformed systems. 
The question is: should the Schrodinger equation be modified under the q-deformation of 
a quantum system? One of the possible modifications is to change a, by the corresponding 
q-derivative [lo]. At the present time, there is no well founded physical reason to modify 
the Schrodinger equation; therefore, we will use equation (2.27) when investigating the time 
evolution of q-deformed systems. 

Another question is related to the choice of a q-deformed Hamiltonian. We have no 
unique method to determine it, having a Hamiltonian of a non-deformed system. One can 
just impose the requirement that a q-deformed Hamiltonian kq = Hq(6 ,  h+) turns into the 
usntl one just as q tends to 1. However, it does not remove any arbitrariness in the choice 
of Hq. For instance, for the q-deformed oscillator, one can take 

kq = +,(6+6 + 6 P ) .  (2.29) 

The corresponding spectrum is determined by (2.7) and (2.23). The choice 

kq = h,(fi - f) (2.30) 

is also available. The Hamiltonians (2.29) and (2.30) have the same limit when q + 1 that 
coincides with the Hamiltonian of an ordinary oscillator. The Hamiltonian (2.30) possesses 
a remarkable property: its spectrum is identical to the usual oscillator spectrum. So, the 
q-deformation does not always modify a spectrum. 

For a complete definition of the transition amplitude, one should also describe the 
properties of a configuration space. It is possible to consider the configuration space of a 
q-deformed system as an abstract non-commutative space [ll].  This point of view on the 
evolution problem is studied in [lo]. We will describe the configuration space, following 
sections 2.2 and 2.3. Another more general approach is proposed in section 5.2. 

Bearing in mind all the reservations mentioned above, we tum directly to the evolution 
problem for the q-deformed harmonic oscillator. In accordance with the Feynman-Kac 
formula, the transition amplif5de reads 

(2.31) 
n=O 

where the spectrum E: depends on the choice of the Hamiltonian I&. The equality (2.31) 
implies that [kq, fi] = 0, i.e. Qn are also eigenstates of the q-deformed Hamiltonian. The 
evolution of a state $(x) is determined as follows 

The sum (2.31) for the Hamiltonian (2.30) can be transformed to the expression 

. W t  W 

2 %  
-I- - -(xz + x ’ ~ )  + i- 
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where e = -q-' exp2ix/lq, 6' =--q-' exp(-2ixt/Iq), y = -q expiwt and 
m 

= n ( l - 4 " ) .  (2.34) 

To obtain (2.33), we substitute the explicit form of On into (2.31) and use a formula 
for.summation of the RogersSzegoe polynomials (see [7] p 50). The product (2.34) is 
absolutely convergent for (41' < 1, (nl < [ql-'. which is valid for all the products 
entering into (2.33) with q defined by (2.15). 

The path integral representation for the transition amplitude (2.31) is given in section 4. 

"4 

3. A system of q-deformed oscillators 

A system of m q-deformed osciIlators can be described by creation and destruction operators 
;?'and C i j ,  respectively, satisfying the commutation relations [ 121 

q N ;  - q-N,  
i+ii = ~~ i , j = 1 , 2  ,..., m. 

4-4-'  
(3.2) 

The generalization of (2.4) to the case of m oscillators is 

[a+, f i j ]  = -sija+ [ii, 41 = G i j l i i .  (3.3) 

&In) = [nil:+a - l i )  

fiilin)=niin) n i=0 ,1 ,  ... . (3.5) 

i j  = fi l / Z  &/2- ai 

i.i+ ' i  - q%i+i i  J = haij [ii, ij] = [i+, i:] = 0. (3.7) 

Therefore, we can construct an abstract Hilbert space with the basis In], nz, . . . n,) In) 

(3.4) (i'ln) = [nj + 1]1/21n + l i )  

where In i. l i )  = In], . . . , ni-1, ni f 1, n i + l , .  . . , n m )  and &IO) =0, so that 

To obtain the coordinate representation, one should define the operators (2.5) for each 

(3.6) 

degree of freedom 

i' , p i +  fi8P , q  
which obey the commutation relations 

The operators (3.6) are the functions of the standard canonical variables [6] 

) (3.8) ij = (e-zit,/jq - e-it,/jqe-6,/(wjq)) i+ = - e-i,/(4$4/fq 
J 

where 

[ i j ,  j k ]  = mj, (3.9) 
LYM* = h(1 - q2)-' and q is defined by (2.15). 

In the coordinate representation, jj = -fia/axj, the eigenvectors of the number 
operators (3.5) are nothing but the product of the functions (2.18) for each degree of freedom 

( X I ,  xz.. . . ,xm1n1, nz, . . . , nm) = n ~ . , ( x i )  = Q~ ,... n m ( ~ )  = = (XIn).  (3.10) 

The states (3.10) form an orthogonal basis with respect the scalar product (2.24) where 
q ( x )  = fly q ( x i )  and xi E Q j .  

m 

i=l 
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3.1. The U,(m) symmetry and a choice of the Hamiltonian 

A system of m usual non-interacting oscillators with equal frequencies have the U(m) 
symmetry. This implies that the Hamiltonian commutes  with all the generators of U(m). 
If we wish to keep the q-analogy of the U(m) symmetry after the q-deformation of all 
oscillators, we should choose a Hamiltonian so that it would commute with all the generators 
off/, ( n ) ~  [ 131 

E;j = 2F2j (3.11) 

d. , - I  - N. - N .  i = 1 , 2  ,..., m - l ~  (3.12) 

i # j = 1.2, . . . , m 

* * *  

(3.13) 

where the operators 6; and 2; obey the algebra (3.1)-(32). To obtain the generators in the 
coordinate representation, one should write them through the operators (3.8). .In this case, 
Cij  = ,,@‘ijq’*J/*, fi.. ‘I - - fii + f i j ,  while z;, d^ keep their form (3.12) and (3.13). 

LFL; - Rmw/2 does not 
commute with Cij and, therefore, there is no system of m non-interacting q-deformed 
oscillators [13]. The operator f i q  = h w ( i  - m/Z) commutes with the generators (3.11)- 
(3.13) and, in principle, we can take it as the U,(m)-invariant Hamiltonian because it 
coincides with the free Hamiltonian in the limit q + 1. In this case, only a self-interaction 
of each~oscillator appears due to the non-linearity of the relation (3.2) or (2.7). The spec!” 
of this Hamiltonian coincides with the spectrum of m free ordinary harmonic oscillators 
because 

~~ ~. 

It is easy to see now that the free Hamiltonian k = Rw 

(3.14) 

Due to the absence of the interaction of oscillators, the transition amplitude is factorized 

(3.15) 

where U j ( x ; , x [ )  is the transition amplitude for one q-deformed oscillator obtained in 
section 2.4. So, the usual and q-deformed systems differ from each other only by 
wavefunctions under this choice of Hamiltonian. 

A priori there are no restrictions for choosing the Hamiltonian, except the requirement 
for its behaviour in the limit q + 1. A non-linear function fi, = H,(fi) can also serve as 
the U,(m)-invariant Hamiltonian if k, +.k as q + 1.  The latter leads to an interaction of 
oscillators. The spechum becomes more complicated, but its main feature, the degeneracy 
of each energy level, is kept because of the explicit U,(m) invariance of the Hamiltonian. 
The degeneracy for every level is determined, by the number of pd t ions  [7] of a fixed 
eigenvalue fi = ni into positive integers. 
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4. The path integral approach 

The path integral method is a powerful tool for the investigation of quantum dynamics. It 
gives a natural connection between quantum and classical theories. To obtain a classical 
theory corresponding to the q-deformed quantum one, we construct the path integral for 
the transition amplitude and study its semiclassical approximation. In so doing, we find a 
Hamiltonian and the Poisson bracket of a q-deformed classical theory. 

The difficulties of this approach are connected with the compactness of the physical 
configuration space, xi E Q, and the presence of the non-trivial measure ul(x) in the scalar 
product (2.24), which prevents us from a direct realization of the standard iterating procedure 
for the path integral derivation. The compactness of a configuration space is related, as a 
rule, to some boundary conditions in a quantum theory, for instance a particle in a box [I41 
or a particle on a circle. A brief consideration of these systems in the framework of the 
path integral method is given in appendix A to elucidate what type of boundary condition 
appears in quantum q-deformed systems possessing a Hilbert space with the basis (3.10). 
To solve the problems mentioned above, we use the method of an analytical continuation 
of the unit operator kernel (x Ix') to the unphysical domain xi E R (see [5,15, 161). 

4.1. Analytical continuation of the unit operator kernel 

We will suppose that a q-deformed quantum theory can be represented as a theory of a set 
of q-deformed oscillators whose destruction and creation operators obey the commutation 
relations (3.7). This means that the states (3.10) form a basis in the Hilbert space of the 
system, but, generally speaking, they are not eigenvectors of a Hamiltonian fi, being a 
function of '6; and @, i = 1,2, . . . , m. In principle, one can consider oscillators with 
different frequencies, i.e. every degree of freedom has a proper deformation parameter 
qi = exp(-h/(mili)). Some remarks concerning this generalization are given at the end of 
this subsection. 

In accordance with the scalar product (2.24), the unit operator kernel reads 

m 
{XIX') = ~ " , . . . ~ ~ ( X ) ~ ~ , . . . " ~ ( X ' )  = (ul(x)~(xo)-1~8(x -x') (4.1) 

nl.....n.=O 

where x and x' are m-dimensional vectors, elements of Rm3 whose coordinates lie in the 
interval Q, and S(x - x') is the m-dimensional delta-function. The analytical continuation 
of the right-hand side of equation (4.1) is provided by the evident results 

%(XI,. . . , x j - ~ , x j  + d , , x j + l ,  .. . ,xm) = i9(xj)Qn(x) (4.2) 

1 
U I ( X 1 . .  . . .xj-* ,  x j  + 7rl , ,Xj* , .  . . . , xm) = - Cl (4.3) 

902(xj) 

rp(xj) =exp [ -- "r(xj+$)] (4.4) 

for each degree of freedom. Equality (4.2) defines the functions Op,(x) over the whole R'" 
through their values on (@SWm, and, hence, the right-hand side of equation (4.1) can be 
also continued to x E R'". Comparing (4.2) and (4.3), we obtain 

(4.5) 
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m m  m 

Q,(x,x')  = n S(xj - x i  -nkjl,) = n Q , ( x j  -,() 
j=1 kl=-m j=1 

(4.7) 

where x E Rm and x' E (EIQ)~. The kernel (4.5) obeys the quasiperiodical boundary 
condition (4.2) because of equation (4.3). 

For a system of oscillators with different frequencies Wj (q + qj in (3.7)). one should 
change w + wj in (4.4). Therefore, the final result (4.5) remains unchanged. In what 
follows, we shall not specially consider the c a e  of different frequencies because the 
generalization is trivial. 

4.2. Derivation of the path integral formula 

Before considering the general case of a q-defonned system with m degrees of freedom 
and an arbitrary Hamiltonian, let us return to the q-deformed harmonic oscillator and derive 
the path integral representation for this simplest system [5]. To avoid unessential~technical 
complications, we first take the Hamiltonian (2.29). The infinitesimal evolution operator 
kernel reads 

The unit operator kernel can be written in the integral representation 

Substituting (4.9) into (4.8) we find 

-to(<*) (4.10) 

(4.11) 

where A = x - x". For the~calculations, we use the following relations (we denote 
&XI exp(-fi/(wLq)), fi  = -ifia/ax ) 

(4.13) 
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(4.15) 

The transition amplitude for a finite time I is defined as the l i t  of the convolution of N 
infinitesimal kernels (4.10) 

as N + 00, E + 0 so that t = ( N  + 1 ) ~  is fixed and A/€ = x + O(E). The finite- 
dimensional approximation (4.16) contains integrations over the interval 4. To transform 
the path integral measure in (4.16) to the standard one with infinite integration limits, we 
calculate explicitly the convolution of two infinitesimal kernels (4.10), 

U,, 4 ( x ,  x’)  = J ,  dxl Uf (Xl )U! ( x ,  Xi)  U2(x1. x’)  (4.17) 

m 
=  PI(^, x‘)  / dnz @(x.,  xz) / k i  Q9(xz, xi) 

-m a, 

(4.18) 

The integral over X I  can be taken with the formula 
m 

d x ‘ Q , ( ~ , x ’ ) f ( ~ ’ )  = O , ( x  -kir19)f(x - - h i 9 )  I f ~ ( x )  (4.19) 
k - m  

where O , ( x )  is the characteristic function of the region S21, On,(x) = 1 for x E S2, and it 
vanishes outside Q. For periodical functions, f(x+n19) = f ( x ) ,  we have f ~ ( x )  = f ( x ) .  
If f ( x  +d9) = - f ( x ) ,  then f ~ ( x )  = q ( x ) f ( x )  where 

(4.20) 

Thus, f ~ ( x )  is a periodical continuation of a function f ( x )  outside the interval Q, f ~ ( x  + 
nl9) fQ(x). 

The kernel f i~ (x lrx“)  in (4.18) depends on exp(fiq/19) and A = X I  -2‘ (see (4.11) 
and (4.12)). After integration over x1 in (4.18). these quantities change as follows 

e x p ( i i n ~ l l ~ )  + S ( X Z )  exp(fixz/19) (4.21) 

and A + x2 - x” - knl, A - k d ,  in accordance with (4.19). The shift of A can be 
removed by changing the integration variable in (4.18), x” + x“-kz19. So, the dependence 
of @(xz .  x”)  on A remains untouched after integration over X I .  As a result, 
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where the replacement (4.21) in ir,"(x2. x") is assumed. 
One can easily transform the measure in (4.16) to the standard phasespace path integral 

measure with the help of (4.22). Carrying out this we obtain the phase-space path integral 
for the transition amplitude of the q-deformed harmonic oscillator 

m 

J_m 
U7pCx.x') = @ I ( x ,  x') dx"@(x,x")Q9(x",  x') (4.23) 

(4.24) 

] (4.25) 

where D ( p )  = exp(-p/(ol,)) and q is given by (2.15). The square root in the second 
term of (4.25) (or the absolute value of cos(x/l,)) appears because of the change (4.21) in 
(4.22) and, hence, in (4.16). The dependence of the path integral on the kernel Q4 defined 
by (4.7) means that the configuration space of the system is topologically equivalent to a 
circle S l .  The influence of topology of a configuration space (boundary conditions) on the 
path~integral is briefly discussed in appendix A. In fact, there is a unique correspondence 
between a form of the operator Q4 and a type of boundary conditions in a quantum theory 
[15,16]. Comparing the kernels (4.7) and (6.10) (see appendix A, a particle on a circle) 
we conclude that the configuration space of the q-deformed harmonic oscillator is a circle 
with the radius 19/2. In the limit L4 + 00, i.e. when the radius of the configuration space 
tends~ to infinity, we recover quantum mechanics of. the ordinary bosonic oscillator since 

U f ( x ,  x') turns into the path integral for the ordinary harmonic oscillator when q -+ 1. 

4.3. The case of an arbitrary Hamiltonian 

All the calculations from the previous subsection can be repeated for an arbitrary 
Hamiltonian fi9 = H,(b^, b^+).  We will assume the Hamiltonian to be a polynomial of 
6 and b^+. Therefore, it can be written~in the following Hermitian form 

Hl(x,p,fi) =hw- 1 + q 2  [--i 1 - i,/- D(p)+~-D2(p) 
1-q2  1 + q  43 2 

x') + 1, Q,(x, x') + S ( X  - x') and H ~ ( x ,  p, f i )  + H ( x ,  p) = (p2 + ~ * ) / 2 .  Thus, 

(4.26) 

dpdx" - 
H 4 ( x ,  p .  A)eiPAlT'Qq(x'',x') 

where A = x - x" and 

(4.27) 
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The coefficients yml are polynomials of a and a* since Gq is assumed to be a polynomial 
of the destruction and creation operators. 

It follows from equation (4.33) that pnn, are regular functions of the Planck constant 
and can be decomposed into series over powers of h because the module of (Y hasalso a 
regular behaviour when A + 0. 

A 01,' 

1 - q z  2 
(4.34) (y(y* = ~ - - - +O@). 

Using (4.33) and (4.34) we have 

H ! ( x , p , A )  = H , ( b * , b ) f O ( k )  (4.35) 

where b* and b are defined in (2.16) and H,(b*,b) plays the role of the classical 
Hamiltonian. The second term in (4.35) vanishes when h + 0 and, therefore, has to 
be identified with quantum corrections to the classical Hamiltonian H,(b*, b ) .  Quantum 
corrections in the effective action entering into a path integral always occur through the 
operator ordering, which actually means that the path integral depends on the operator 
ordering [15].  

The measure p l (x ,  x') can also be associated with 'the quantum corrections because 
&I = l + O @ ) .  In contrast with pi, the operator aq in the path integral (4.23) is independent 
of the Planck constant and, hence, the compactification of the configuration space of q- 
defamed systems must take place in the classical limit. For this reason we can omit the 
function q(x) in the classical limit of (4.29) because E ~ ( x )  = 1 if x E Q, i.e. E ~ ( x )  = 1 on 
the physical configuration space x E S ' .  

In the general case ofAa q-deformed system with m degrees of freedom and the 
Hamiltonian Gq = I?,(&+, b ) ,  & means the set (lj), j = l , ,  2, . . . , m ,  one can also obtain 
the corresponding classical theory with the Hamiltonian 

Hi(x .p )  H i ( x , p , k  =0) = Hq(b'.b) (4.36) 

which is defined on a phase space with the ordinary symplectic form (the Poisson bracket 
of canonical variables) 

{ X j ,  Pk] = s j r .  (4.37) 

The quantities b" and b can be called the q-deformed phase-space holomorphic variables. 
In the limit lq + CO, they convert into the ordinary ones, 

bj = (pj  - iwjxj) /&+O(l / l , )  bJ = (p j+ iw jx j ) /&+O( l / lq ) .  ~ (4.38) 

The existence of the standard symplectic structure in the classical theory allows USJO 

recover the q-deformed quantum theory by means of the canonical quantization when all the 
canonical variables xj and p ,  become operators with the commutation relation induced by 
the Poisson bracket [,] = i7i[, ). Let us verify this for the classical theory obtained above. 
Changing the canonical variables p j  and xj by the operators $j  and .?j in (2.16) (w -+ wj)  
for each degree of freedom, we get the operators Ej and 67 that satisfy the relation t 

(4.39) 

t The opentor ordering problem c m  be solved by imposing the requirement (?,?)+ = ?j i f f +  = f andi+ =i. 
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where qi is given by (2.15) with w = wj. Setting 

Oil," 
Zi phi Z? prs' p.p' I 8 -  - - (1 - 42) (4.40) 

we obtain the quantum theory with the destruction and creation operators obeying the q- 
deformed Heisenberg-Weyl algebra (3.7). 

This simple observation shows us that the canonical quantization and so called q-defor- 
mation can be independently done for a classical theory, also the limits q + 1 and A -+ 0 
comh~ute with each other. Thus, taking first the classical limit A + 0 and then the limit 
lq -+ CO in the q-deformed quantum theory, we arrive at a classical theory; the same 
classical theory can be recovered by taking first the limit lq -+ CO and then the classical 
limit h -+ 0. Going in the opposite directions from a classical theory, quantization -+ q- 
deformation and q-deformation -+ quantization, we obtain the same q-deformed quantum 
theory. 

Consider the classical Hamiltonian (4.35) for the harmonic q-oscillator. Taking the limit 
h + 0 in (4.25) we find 

(4.41) 

An interesting feature of the theory with the Hamiltonian (4.41) is that it has a degenerate 
classical 'vacuum' state, i.e. if we treat (4.41) as an energy of the system, then its absolute 
minimum is provided by the phase-space configurations p = 0, x = xlqn with n being a 
number. This resembles a particle in a periodic potential (see 1171 and references therein). 
In quantum theory, the ground state of the particle splits into a zone due to tunnelling. 
Energy levels in the zone are numerated by a continuous parameter 8, i.e. there appears a 
@-vacuum structure. In quantum theory of the q-deformed harmonic oscillator, we have no 
@-vacuum structure in spite of the degeneracy of the classical ground state. Notice that the 
states (2.18) are exact eigenstates of the Hamiltonian (2.29) (see (4.29)), therefore, there is 
no @-zone around the ground state of the q-deformed harmonic oscillator. 

It seems, however, that another choice of the Hamiltonian (see (2.22)) could provide 
the @-vacuum structure. We shall not investigate this problem herein because principles for 
choosing Hamiltonians of q-deformed systems remain far from obvious. 

&(x ,  p , ~  = 0) = z w  1 2 2  l , [ ( ~ ( p )  - I c o s ( x / ~ g ) l ) 2 + s i n z ( x / ~ q ) ~ .  

5. Classical mechanics of q-deformed systems 

5.1. Solutions to classical equations of motion 
Let us calculate the Poisson bracket of the q-deformed holomorphic variables bj and bj.  
Using (4.37) we have 161 

Assuming a Hamiltonian to be a function of the holomorphic variables, Hq = H,(b,b*), 
we obtain the'Hamiltonian equations of motion 

(5.3) 
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Equations (5.2) and (5.3) cin be integrated for certain particular Hamiltonians. Let, for 
instance, H9 be a function of m variables hi = wib;bi (the energy of a free q-oscillator 
with a frequency mi). Obviously, (hi, hj] = 0 and , therefore, they are integrals of motion, 
hi = E; = constant. The equations of motion are simplified 

where E = H,(EI,. . . , E,) is the energy of the system. Thus, we observe that the 
holomorphic variables oscillate with the frequencies depending on the energy of the 
oscillators. The evolution of $e canonical variables x , p  can be found from the equalities 

where yj = m. We remember that xj(t) E S ' ,  i.e. the configurations rj(t) and 
xj(t) + alq are related to the same physical state and must be identified. 

In the formal limit l9 + 00, the Poisson bracket (5.1) turns into the standard one. 
Actually, l9 is a fundamental constants like R and, therefore, it cannot 'tend' to 'anything'. 
The physical meaning of the limit l9 + 00 is that the q-deformed system becomes the 
classical one when the energy of a free q-oscillator is much less than the characteristic 
energy E,"), Ei << EO). This resembles the relation between quantum and classical 
mechanics when the formal limit R + 0 means that the action S of a system is much 
greater than the Planck constant, S >> h.  

5.2. The q-defonation and non-canonical tran$ormations 

The equalities (2.16) determine a non-canonical transformation xj, pj + Xj, Pj> 

E i b j  + b;) (5.9) 
1 

Xj = X j ( ~ , p )  = - (bj - b;) Pj = . P j ( ~ , p )  = & 

(5.10) 

,where we use the relation (5.1). Therefore, the q-deformation can be identified with the 
non-canonical transformation (5.9). In fact, the variables x , p  play the role of the Darboux 
variables [18] for the symplectic structure (5.10). We remember that, by definition, the 
symplectic structure in the Darboux variables has the standard form (4.37) [IS]. 

The symplectic structure (5.10) on the phase space spanned by the coordinates X , P  
can be postulated at the very beginning. It is easy to be convinced that the Poisson bracket 
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thus defined satisfies all the characteristic properties [18]-bilinea1ity, skew-symmetry, the 
Leibnitz rule and the Jacobi identity. The canonical quantization of a classical system 
with the 'q-deformed' symplectic structure (5.10) leads to the non-standard Heisenberg 
commutation relation [9] 

(5.11) 

It is known that non-canonical commutators for position and momentum operators [ 191 can 
lead to q-deformed quantum theories [9,20,211. Indeed, introducing the operators 61 and 
6; connected with f j  and @j by the relations (5.9), we have 

(5.12) 

Renormalizing the creation and destruction operators 6 j  + (1 + ho~j/(2Ef'))-'/~6~ 
(analogously for 6;) we obtain 

Lj& -,yi+;. k i -  - h i  j k  (5.13) 

(5.14) 

The deformation parameter in this approach differs from (2.15). 
To obtain a relation between the theory (5.11) a?d quantum mechanics constructed 

in section 2, one should realize the operators i j  and Pj in a space of functions of m real 
variables, i.e. introduce a representation like (3.8). In so doing, we find.that the dimensional 
parameter l4 is not a fundamental constant in quantum theory; it turns out to be a function 
of the Planck constant and parameters E:) and oj characterizing the classical theory (5.10). 
We observe also that lq can depend on the number j of degrees of freedom. Indeed, 
comparing (5.13), (5.14) and (3.7), (2.15) we find the relation 

Hence, 

(5.15) 

(5.16) 

As has been shown above, the parameter 1, determines the 'volume' of the physical 
configuration space in the quantum theory and !herefore this volume becomes a function of 
the Planck constant. Moreover, the operator Qq entering into the path integral (4.23) also 
depends on the Planck constant. This gives rise to a natural question: what happens in the 
semiclassical limit then? It is easy to see that 

(5.17) 
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and, therefore, we recover all the results of section 4.4, i.e. the quantity @lo+ (that 
is assumed to be independent of j )  determines the radius of the configuration space in the 
classical theory. The topology of the configuration space re mains^ unchanged in 
quantum and classical theories. 

A quantization of a classical theory possessing a non-trivial and non-degenerate 
symplectic structure can be performed by two methods. The first is to postulate the 
commutation relations induced by the Poisson bracket 

[kj, AI = i W j s  P + , ~ = B , ~  (5.18) 

The other approach supposes the Darboux variables to be found before quantization and the 
sequential quantization of the Darboux variables, i.e.. ( X i ,  Pk) = [ X j ( x ,  p).  P&, p) )  if 
{xi, p d  = 6jx and t 

* . .  
K j ,  Pkl = [ X j @ , i j ) ,  Pk(i,ij)l . (5.19) 

if [ i j ,  j k ]  = ih8ja. In general, both approaches can lead to different quantum theories. 
Indeed, the use of (5.18) gives the relation (5.12) for creation and destruction operators, 
while the rule (5.19) produces the commutation relation (4.39) which is different from 
(5.12). To establish a connection between the two theories (5.18) and (5.19), one should 
represent the operators (5.18) through ij and c j ,  i.e. introduce the Darboux variables after 
quantization, which has been done when deriving equation (5.15). 

5.3. The principle o j  least action 

Equations of motion (5.2) and (5.3) can be obtained from the principle of least action. 
Let us denote the phase-space variables ( X j ,  P j )  by B A  such that 0'j-l = X j  and 
6 " j  = Pj ,  j = 1,2, . . . , m. In this notation, the Poisson bracket (5.10) for two functions 
F1,z = F&) on the phase space reads 

[Fi, &) = OABdaFia,qFz (5.20) 

where an = a f aOA and non-vanishing contravariant components of the symplectic structure 
are defined by the equality 

Solutions to the Hamiltonian equations of motion determine an extremum of the action 

&,[e] = dt ( e A 6 A B e B  - ffq(e)) (522) 

where the functions GAB are defined in terms of covariant components OAB,  WACW'~ =.&AB, 
of the symplectic structure [22] 

s 
& A B ( @ )  = (&c +2)-'&,4s(0) = (5.23) 

See footnote 1 on p 2597 
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Substituting the matrix inverse to (5.21), 

into (5.23) and doing the integral over a! we obtain 

(5.24) 

(5.25) 

To be convinced that the equation SS, = 0 is equivalent to Hamiltonian equations of 
motion (5.2) and (5.3), 

e A  = wAB(e)asH,(e) (5.26) 

one should use the standad algebraic property of the symplectic metric [l] 

aaosc + asoca + acwas = 0 (5.27) 

that results from the Jacobi identity for the Poisson bracket (5.20), for calculating the 
variation of the action. Notice that the action (5.22) contains the matrix that satisfies 
the identity (5.27) too as follows from its definition (5.23). 

5.4. Representation of U&) on a commutative phase space 

A quantum system of m qdeformed oscillators with equal frequencies has the U&) 
symmetry as is shown in section 3. Therefore the corresponding classical theory must also 
have this symmetry. It means that the Poisson bracket of a classical Hamiltonian with all 
the generators of U,(m) vanishes. 

To obtain the generators of U,(m) as functions on the phase space (X, P) (and, hence, 
on the phase space of the canonical variables (x ,~)) ,  one can simply change the creation and 
destruction operators in (3.1 1) and (3.12) Written via the operators (3.6) by the corresponding 
deformed holomorphic variables b* and b in accordance with the classical limit investigated 
above. Let us first construct the classical analogue of the operators f i i .  The characteristic 
properties of the number operator are given by (3.3). So, one should find functions 
Hi = H;: (X .P)  such that their Poisson bracket with the holomorphic variables bj and 
b; would be proportional to bj and b;, respectively. We define the functions Hi by the 
following equalities 

h .  , -  - &*b. I I = - e--XljE'n) (5.28) 

where w is a frequency of all oscillators. The relation (5.28) can be treated as a formal 
classical limit of the operator equality (2.7). Notice that in the case of usual oscillators, the 
classical limit means that an eigenvalue of the number operator tends to infinity, f i r  + CO, 

while the operator fiwfij turns into the classical Hamiltonian of one free oscillator as R +: 
and fii  + CO. Therefore, one can assume Hi to be a classical limit of the operator RUN;: 
entering into the equality (2.7) written for each degree of freedom. It is easy to see that the 
functions Hi have the remarkable properties 

(Hi ,  b;] = -ioSijbj* (Hi, b j ]  = ioSijbj  (5.29) 
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which are classical analogies of the relations (3.3) for the operators (3.6). 
Now we can determine the formal classical limit of the operators Cj and 2;. Changing 

the operators ij and i; by the corresponding holomorphic variables bj and b; in (3.6) and 
then taking into account that hwfij + Hj as h --f 0, we obtain 

ai = bi exp(HC/4E(')) af = bf exp(Hi/4E(')) (5.30) 

as the classical limit of the operators hl/'ii and h'/'2+, respectively. The Poisson bracket 
of the new holomolphic variables (5.30) has the form 

(5.31) 

(5.33) 

(compare (5.32) with (3.3) and (5.33) with (3.2)). In accordance with the rules of the 
classical limit established above, we define the generators of U,(m) as the following 
functions on the phase space spanned by commutative coordinates (X, P) 

e..-aafa. U -  I J i #  j = 1,2, ..., m (5.34) 

(5.35) 
1 

d .  J - w  - -(H. - H. J + l )  j = l , 2 .  ..., m - 1  

1 m  

w . J' 

1 
d = -H - H. 

J 2 l  w 
(5.36) 

The commutation relations for the generators with respect to the Poisson bracket (5.10) (or 
(5.31)) read 

Hk + icYjk,ej,k cosh - Hj (5.37) 

(5.38) 

2E(') 
[ejk, ej'k,} = -i+kejkr cosh - 

2E(') 

(ejk. d,} = -. I(&. - s j n  - h + i  + b+ljejx 
I. 

(e jk .  d )  =o {dj, d )  = 0 (5.39) 

In the case of j = k' or j' = k in the right-hand side of the equality (5.37), the quantity ejj 
must be treated as aJaj defined by equation (5.33). The Hamiltonian, being a function of d, 
obviously commutes with all the generators (5.34)-(5.36). After the canonical quantization 
of (5.34H5.36); we recover the bosonic q-oscillator realization of U,(m) (3.1 1)-(3.13). 

Thus, the generators (5.34)-(5.36) determine an action of U,(m) on the phase space 
spanned by commutative coordinates with respect to the Poisson bracket constructed above 
and, hence, they realize a representation of Uq(m) in a space of functions on the phase space 
( X , P )  (or ( x - p ) ) .  This means that we associated a vector field V, with each generator 
U = (eij, d,, d )  of U,(m) such that 

V"F = [U, F ]  (5.40) 
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for an arbitrary function F on the phase space. The vector fields V, realize an action of 
Uq(m) on the phase space because of the property 

IVO, V,,I = b , d l  (5.41) 

which is guaranteed by the Jacobi-identity for the Poisson bracket. 
Concluding this section we would like to emphasize that a system of q-oscillators is 

not the only q-deformed system which can be described by the 'deformed' symplectic 
structure. In our recent work [23], we have developed this approach for a q-particle (or a 
particle on the q-line) [24]. It turns out that the q-particle can be. treated as a particle with 
friction (the friction force acting on the particle is proportional to its velocity). We also 
construct constrained systems whose dynamics, being reduced on the physical phase space, 
is equivalent to dynamics of the q-oscillator or the q-particle [23]. 
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Appendix A. The path integral and boundary conditions 

AI .  A particle in a box 

The transition amplitude Uz(x, x') = ( X I  exp(-itZ?/h)]x') for a free particle moving in a 
one-dimensional box, fi = -h2/2aZ/axZ, satisfies the Schodinger equation 

hZ az 
2 axz iha,u,(x,x') = --~-uI(x,x') 

with the initial condition 

Ut,&, x') = 6 ( x  - x') x, x' E [O, 11 

and the boundary conditions 

u,(o,x')=ul(l,x') =ul(x ,o)  = U , ( x , l ) = O  043) 

where 1 is a size of the box. The solution to equation (AI) with the initial condition (A2) 
is well known 

UI(x, x') = (~~iiit)-''* exp[i(x  it]. (A4) 



Qwntum and classical mechanics of q-deformed systems 2605 

However, it does not satisfy the boundary conditions (A3). To obtain a solution to ( A l t  
(A3), one should take the following linear combination [14] 

) (A51 
i(x - x' - 21n) 2 i(x + x' - 21n)' CU 

u t ( x , x ' )  = (k%t)-1/* (exp - exp 
"=-CC ?At 2ht 

The operator 2, contains all information about the boundary conditions. The kernel (A4) 
has the standard path integral representation 

where the integral is taken over all paths connecting the initial point x(0) = x' with the final 
one x ( t )  = x. The symmetlization (A6) of the path integral (A8) means that except direct 
trajectories connecting the points x' and x, one should also include trajectories reflected 
from the 'walls' into the path sum. The sign of a contribution of a reflected trajectory into 
the transition amplitude depends on the type of boundary conditions [15]. 

A 2  A panicle on a circle 

The transition amplitude for a free particle on a circle satisfies the periodic boundary 
condition 

and the Schrodinger equation (Al) with the initial condition (A2). The path integral 
representation for the transition amplitude has the form (A6) where f i , (x ,  x") is given 
by (A8), but the operator 2, has to be changed as follows 

because of the other choice of boundary conditions. Equality (A10) shows us that all 
contributions of the reflected trajectories are taken with the same sign if the configuration 
space is topologically equivalent to a circle SI. It is exactly the case of q-deformed systems 
(see sections 4.2 and (4.7), (4.23) therein). The stmcture (A6) (and (4.23), as well) of the 
transition amplitude is preserved in the semiclassical approximation and, therefore, one can 
state that the configuration space of classical q-deformed systems is (@S')". 



2606 S V Shabanov 

References 

[I] Sklyanin E K 1982 J. SON Math. 19 1532 
[2] Biedenham L C 1989 3. Phys. A: Math Gen. 22 L 8 n  
[31 Macfarlane A J I989 J. Phys. A: Mat& Gen 22 4581 
[4] Drinfeld V 1985 So". Math. Dok 32 254 

Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 11 247 
Fnddeev L D, Reshitikhin N Yu and Takhhjan L A I989 AdvancedSeries in MathematiealPhysics vol 9, 

ed Yang C N and Ge M L (Singapore: World Scientific) 
[SI' Shnbanov S V 1992 Phys. Len. 293B 117 
161 Shabanov S V I992 1. Phys. A: Math. Gen. 25 L1245 
[7] Andrews G E 1976 The Theory of Partitions. Encyclopedia of Malhemalics and its Applications vol 2 

[XI Chaichian M and Ellinas D 1990 J.  Phys. A; Marh  Gen. 23 L291 
[9] Brodimns G. Jannussis A and Mignani R 1992 J. Phys. A: Math. Gen. 25 L329 

[IO] Baulieu Land Flontos E G 1990 Phys. Le::. 258B 171 
[l I] Manin Yu 1 I989 COmrnun Math Phys. 123 163 

Wess J and Zumino B 1990 N u d  Phys. B (Proc. SuppLJ 18 302 
Woronowicz S L I989 Commun Math. Phys. 122 125 

[I21 Sen C P and Fu H C 1989 1. Phys. A: Math Gen. 22 L983 
Hayashi T I990 C o m n .  Math Phys. I27 129 
Chaichian M, Kulish P and Lukierska J 1991 Phys. L ~ I L  262B 43 

[I31 Floratos E G 1991 J. Phys. A: Math Fen. 24 4739 
[I41 Pauli W 1973 Pauli Lectureson Physier Massachusens 

Ianke W and Kleinert H 1979 Left. Nuovu Cim 25 297 
Prokhomv L V I983 Em. Leningr. Univ. Fir. Khim 14 [in Russian] 
Prokhorov L V I982 Sou. I .  Part. NusI. 13 1094; 1984 So". J. Nuel. Phys. 39 496 
Shabanov S V 1991 Phyx Le::. 2558 398; J. Phys. A: Math Gen. 24 1199; lnt. J. Mod. Phyx A 6 845 
Fadjaraman R 1982 Solitons and Inslantom (Amsterdam: North-Holland) 
Amol'd V I 1978 Mathemiicoi Methods of Classical M e c h i c r  (Graduate Texts in Mathematics 60) (New 

Weyl H 1950 Theory of Groups Md Quantum Mechanics (New York Dover) 
Schwinger J 1960 Proc. Natl Acad ofSci. 46 570 
Rampacher H, Stumpf H and Wagner F 1965 Fort. Phy. 13 385 
Jannussis A, Stredas A, Sourlas D and Vlachos K I977 Lett. Nuovo Cim 19 163 
Yamamura M 1979 Pros. Theor. Phys.~62 681 
Jannussis A D, Filippakis P and Papaloucas L C 1980 Len. Nuovo Cim 29 481 
Saavedra I and Utreras C 1981 Phys. Lett. 98B 74 

[ZO] Cuaright T and Zachos C K 1990 Phys. Left. 243B 237 
Failie D B and Zachos C K 1991 Phys. Lett 256B 43 

[21] Fairlie D B and Nuyts J 1991 J. Phys A: Marh Gen. 24 L1001 
1221 Batalin A I and Fradkin E S 1989 NucL Phys. B 326 301 
1231 Shabanov S V 1992 Q-deformed systems and constrained dynamics (to appear in Proc. XXVIlnt. Symp. on 

(Massachusetts: Addison-Wesley) 

[I51 
[I61 
I171 
I181 

[I91 
York Springe,) 

. ,  , 

Elementor/ Pnrticle Phwics (Wendisch-Rim Germany, Semwber, 1992) . .  
[24] Arefevn I <a and Volovich I V 1991 Quantum group panicles and non-Archimedian geometry Preprint 

CERN-TH.6137/9 1 


